A parametric finite element method for fourth order geometric evolution equations
نویسندگان
چکیده
We present a finite element approximation of motion by minus the Laplacian of curvature and related flows. The proposed scheme covers both the closed curve case, and the case of curves that are connected via triple junctions. On introducing a parametric finite element approximation, we prove stability bounds and compare our scheme with existing approaches. It turns out that the new scheme has very good properties with respect to area conservation and the equidistribution of mesh points. We state also an extension of our scheme to Willmore flow of curves and discuss possible further generalizations.
منابع مشابه
Finite Element Methods for Geometric Modeling and Processing Using General Fourth Order Geometric Flows
A variational formulation of a general form fourth order geometric partial differential equation is derived, and based on which a mixed finite element method is developed. Several surface modeling problems, including surface blending, hole filling and surface mesh refinement with the G continuity, are taken into account. The used geometric partial differential equation is universal, containing ...
متن کاملConstruction of Subdivision Surfaces by Fourth-Order Geometric Flows with G1 Boundary Conditions
In this paper, we present a method for constructing Loop’s subdivision surface patches with given G boundary conditions and a given topology of control polygon, using several fourth-order geometric partial differential equations. These equations are solved by a mixed finite element method in a function space defined by the extended Loop’s subdivision scheme. The method is flexible to the shape ...
متن کاملConstruction of Subdivision Surfaces by Fourth-Order Geometric Flows with G Boundary Conditions
In this paper, we present a method for constructing Loop’s subdivision surface patches with given G boundary conditions and a given topology of control polygon of the subdivision surface, using several fourth-order geometric partial differential equations. These equations are solved by a mixed finite element method in a functional space defined by the extended Loop’s subdivision scheme. The met...
متن کاملSTABILITY ANALYSIS FROM FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR TWO CAPILLARY GRAVITY WAVE PACKETS IN THE PRESENCE OF WIND OWING OVER WATER.
Asymptotically exact and nonlocal fourth order nonlinear evolution equations are derived for two coupled fourth order nonlinear evolution equations have been derived in deep water for two capillary-gravity wave packets propagating in the same direction in the presence of wind flowing over water.We have used a general method, based on Zakharov integral equation.On the basis of these evolution eq...
متن کاملNumerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 222 شماره
صفحات -
تاریخ انتشار 2007